INDEX CARD #12 (BACK & FRONT)

SEQUENCES & SERIES

<u>ARITHMETIC</u> – HAS A COMMON DIFFERENCE (2ND TERM– 1ST TERM) <u>GEOMETRIC</u> – HAS A COMMON RATIO (2ND TERM/ 1ST TERM)

<u>Finite</u> – Ends <u>Infinite</u> – Does not end

<u>RECURSIVE FORMULA</u> – USES PREVIOUS TERM TO GET THE NEXT TERM <u>EXPLICIT FORMULA</u> – USED TO FIND A SPECIFIC TERM

SEQUENCE – A SET OF NUMBERS WITH A PATTERN (SEPARATED BY COMMAS)

<u>Series</u> – The Sum of a Set of Numbers With a Pattern (Separated by Plus Signs)

GEOMETRIC
EXPLICIT:
$a_n = a_1(r)^{n-1}$
EVALUATING THE SERIES:
$S_n = \frac{a_1(1-r^n)}{1-r}$

WHEN GIVEN A FORMULA : SUBSTITUTE FOR n = # (Term #) WHEN THERE IS $a_n = a_{n-1} + n$

SUMMATION - SIGMA

 \sum Formula

Sub in the number at the bottom in the formula Continue substituting until you substitute the # on the top Add all of the terms together If there is a # in front multiply the sum by that #